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Abstract 

The holographic method for the recovery of the electron 
density of macromolecules is based on the expansion of 
the electron density into Gaussian basis functions. The 
technique makes consistent use of real- and reciprocal- 
space information to produce electron-density maps. It 
enforces positivity of the recovered electron density and 
makes effective use of previously known information 
about the electron density, such as knowledge of a 
solvent region or knowledge of a partial structure. In 
this paper, we summarize the theory underlying the 
holographic method, and describe how we extend the 
range of information that can be used by the method 
to include information from multiple-isomorphous- 
replacement (MIR) data, multiple-anomalous-dispersion 
(MAD) data and knowledge of non-crystallographic 
symmetry. The convergence properties and the limiting 
accuracy of the method are discussed. Its power for 
synthetic problems is demonstrated and the method 
is applied to experimentally measured MIR data from 
kinesin, a motor protein domain that has recently been 
solved. Appendix A gives a detailed description of 
the algorithms and the equations used in EDEN, the 
computer program that implements the holographic 
method. 

I. Introduction 

In previous publications of this series [Sz6ke (1993, 
hereafter paper II); Maalouf, Hoch, Stern, Sz/Ske & 
Sztike (1993, paper III); Somoza et al. (1995, hereafter 
paper IV)I, we began to examine X-ray crystallographic 
computations of macromolecules from a long neglected 
point of view (Bragg, 1950; Tollin, Main, Rossmann, 
Stroke & Restrick, 1966). We called the results of these 
considerations the holographic method. Related ideas 
were explored in the work of Brran (Brran & Szrke, 
1995). 

The most important limitation on the power of X-ray 
crystallography is that, as a consequence of Bragg's 
law, the electron density of a crystal cannot be fully 
recovered from its diffraction pattern alone. This is 

t" Part of this work was performed under the auspices of the US 
Department of Energy under contract no. W-7405-ENG-48. 

the well known phase problem. Many years ago, the 
eminent mathematician L~mczos (1961) pointed out that 
no mathematical trickery can remedy lack of infor- 
mation. The holographic method does not attempt to 
circumvent L~inczos's dictum. Our principal claim is 
that the holographic method is a simple and effective 
way of using all available information simultaneously, 
consistently and sometimes optimally. In our previous 
papers, two kinds of information were utilized: the 
positivity of the electron density and the location of 
contiguous regions of disordered solvent. In the present 
paper, more kinds of information are added: the presence 
of isomorphous derivatives, anomalous dispersion and 
non-crystallographic symmetry. 

In paper II, a somewhat abstract analysis of the 
mathematical structure of the holographic method was 
given. Our discussion started from the analogy of an 
X-ray diffraction pattern and a hologram. We assumed, 
for example, that in part of the unit cell of a crystal 
the electron density is known. This is the situation in 
molecular replacement and also during the solution of 
crystal structures. The complex amplitude of the wave 
diffracted from the known part can then be calculated 
and identified as a holographic reference wave. Simi- 
larly, the wave diffracted from the unknown part of the 
unit cell is analogous to an object wave in holography. 
The pattern of intensities observed in X-ray diffraction 
from a crystal, when reduced to the absolute squares 
of the structure factors, is then analogous to a recorded 
hologram. It contains the sum of the intensities of the 
waves scattered from the known and the unknown parts 
of the electron density of the crystal and also their 
interference. The interference term depends on the cosine 
of the relative phase of the reference wave with respect 
to the object wave, which, therefore, can be determined 
to within a sign ambiguity. This phase information 
can then be used to recover the unknown part of the 
electron density. In the language of holography, the 
unknown wave can be reconstructed and its source can 
be found. In paper II, the reconstruction was shown to 
reduce to a standard inverse problem, similar to those 
encountered in image processing and phase recovery. 
Our algorithm, built on the above observations, searches 
(in real space) for an electron density that minimizes the 
deviation of the magnitudes of the calculated structure 
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factors from the measured ones (in reciprocal space). We 
found that the ubiquitous holographic 'dual image' also 
appears in X-ray crystallography, and that its presence 
is equivalent to the aforementioned sign ambiguity. 
We argued that, under favorable conditions, forcing the 
recovered electron density to be positive can eliminate 
the dual image. 

A practical algorithm for X-ray crystallography was 
developed by recognizing that the holographic kernel 
is shift invariant. This enabled us to use fast Fourier 
transforms (FFT) and a conjugate-gradient optimizer, 
developed by Dennis Goodman (Goodman, Johansson 
& Lawrence, 1993), which is capable of incorporating 
various constraints. The result was the development of 
a suite of computer programs (EDEN) for the solution 
of crystallographic problems of current interest. The 
main solver program runs in N log N time, where N 
is the total number of resolution elements in the unit 
cell. Workstations (IBM 6000, HP 9000, SGI Iris or 
equivalents) are adequate to treat realistic problems. 

Paper IV presented the basic algorithm and some 
applications. The method was first exercized on a model 
of thaumatin, a 207-residue protein. Various fractions 
of the protein were deleted and successfully recovered 
by the holographic method. We could recover deleted 
fractions even after varying the scaling of the data and 
adding noise. An important advantage of such studies 
was that goodness of recovery could be measured quan- 
titatively. As a real example of protein crystallographic 
work, we reported briefly on the solution of the structure 
of a staphylococcal nuclease mutant. As the holographic 
method recovers electron density, it changes the phases 
of the structure factors. Also, there was a strong hint of 
diminished phase bias, compared to traditional Fourier 
methods. 

Another significant step was taken by B6ran (B6ran 
& Sz6ke, 1995). In that work, a model protein was 
completely recovered from the knowledge of the electron 
density in about half the volume of the unit cell, even 
though the known density was entirely in the solvent 
region. This gives strong support to the notion that, 
using an appropriate algorithm, phase recovery under 
these conditions is an 'easy' computational problem. 
In paper IV, we continued to build on B6ran's results 
and incorporated them into the holographic algorithm. 
In particular, we used the known electron density in 
part of the unit cell either as a mask or as a 'target' 
density. A cost function in real space was constructed 
from the deviations of the recovered electron density 
from the target density. It was minimized in parallel with 
the standard holographic cost function, which measures 
the deviations of the calculated structure factors from 
the measured ones. The relative importance of the two 
cost functions could be controlled by a relative weight 
(Lagrange multiplier). When the known density is in 
a solvent region, the procedure is similar to solvent 
flattening. When the known density is that of a molecular 

fragment, we expect the results to be similar to molecular 
replacement. 

We will start this paper with a brief summary of the 
theory of the holographic method and our experience 
with it. The central theme of the present paper is the 
consistent use of available information. In EDEN, each 
kind of additional information becomes a new term in 
the cost function in the form of constraints or restraints. 
(Although both constraints and restraints will be incor- 
porated into the algorithms, we will use the term con- 
straints in all cases.) The holographic method is extended 
to multiple isomorphous replacement (MIR), multiple 
anomalous dispersion (MAD) and non-crystallographic 
symmetry (NCS). 

After the derivation of two different versions of the 
pertinent equations, the algorithm incorporating MIR 
is tested on an artificial example, by adding 'heavy 
atoms' to a model of staphylococcal nuclease. We verify 
that such an algorithm works: given enough derivatives 
and heavy enough atoms, it recovers a perfect electron 
density. Using the same model, we explore the global 
convergence of the algorithm, as well as the difficulties 
of MIR when there are too few derivatives or heavy 
atoms that are too weak. We close the section by 
applying EDEN to the solution of kinesin using MIR 
data. This molecule has recently been solved by Kull, 
Sablin, Lau, Fletterick & Vale (1996). We used their 
data and were able to compare the holographic method 
with other available solutions. 

Our treatment of non-crystallographic symmetry 
(NCS) is somewhat different from traditional methods. 
We do not interpolate in either real or reciprocal space. 
The inherent accuracy of our method is limited by the 
basis-function representation of the electron density. The 
expected advantage of the holographic method is that 
it is not too sensitive to exact a priori knowledge of 
the volume and shape of the monomers, i.e. the units 
repeated by the NCS operation, or of their possible 
differences. We have not yet tested our NCS algorithm 
on real problems. 

EDEN is available free of charge to qualified collab- 
orators. Please contact HS by e-mail at szoke2@ llnl.gov. 

2. Theory and algorithms 

2.1. Summary of the holographic algorithm 

The notation in this paper is the same as in our 
previous papers. For precise definitions, the reader is 
referred to paper II (SzOke, 1993) and for more details 
to Appendix A of this paper. 

The electron density in the unit cell of a crystal 
is divided, perhaps artificially, into a known and an 
unknown part. The structure factors of the known part 
are denoted by R(h). They are given by 

R(h) = f Pknown(r) exp(27rih..T'r) dr, (1) 
unit cell 
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where we use standard crystallographic notation. The 
unknown part of the electron density is described as 
a sum of Gaussian basis functions of equal widths, 
centered on a grid that divides the unit cell into P,,, 
P~,, P equal parts along the crystallographic axes a, b, 
c, respectively. The grid points are denoted by rp, p = 
1 . . . . .  P, where P = P,~PbP. Each Gaussian blob (voxel) 
contains an unknown number of electrons, n(p): 

The notation R(h) for the structure factors of the known 
part of the structure and O(h) for those of the unknown 
part of the structure is adopted from holographic theory, 
where R(h) and O(h) denote the reference and object 
wave, respectively. The squares of the absolute magni- 
tudes of the structure factors of the crystal, IF(h)l 2, can 
be related to the measured X-ray diffraction intensities 
in a known way and satisfy the equation 

P 
3/'~ 3 

flunknown(r) ~ (71"" - /d~es )  ~ r / (p )  
p= l  

"~ 2 x exp[- (Tr2l r -  r;,l-)/d~,]. (2a) 

Such a representation of the electron density carries 
with it an 'intrinsic' data resolution. The resolution, 
dr~ ~, corresponds to the lattice spacing for which the 
structure factors decrease to 1/e of their peak value or, 
equivalently, d ~  = B/4, where B is an average crys- 
tallographic B factor. From the formula B = 87re(u2), 
where (u 2) is the mean square amplitude of the atomic 
motion, we conclude that (d~c~/Tr) 2 = 2(u2). In the 
program, we use an input r e so lu t ion  din p = 0.53drcs, 
whose value is more in accord with our intuitive notions 
of data resolution. In our formulas, we will use the more 
general, if cumbersome, notation that was used in our 
previous papers: 

pu.k.ow.(r) -~ [1/(~,~Zr2)3/2] 
P 

× ~ n(p)exp(-Ir  - rpl2/rlAr2), 
p----I 

(2b) 

where Ar is the mean grid spacing and 71 determines the 
width of the Gaussians relative to the grid spacing. The 
two forms of (2) are equivalent i f  (dres/Tr) 2 = 71Ar 2. 
As discussed in Appendix B, if the grid spacing is 
sufficiently fine, the electron density of the unknown 
part of the molecule can be well approximated by 
such a superposition of Gaussians. We also show that 
the choice of Ar = dre~/Tr, where Ar ~ ]al/P, ~ 
Ibl/eh ~ Ic l /e ,  and zl = 1 are a good choice for 
the lattice spacing in a simple lattice. In the algorithm 
to be described below, the unknowns n -- {n(p)} are 
obtained by minimizing a cost function that measures 
the error between the calculated and measured structure- 
factor amplitudes. (The residual error that results from 
the finite mesh size will be discussed in §2.3.) When 
(2b) is extended periodically over the repetitions of the 
unit cell, a derivation presented in paper II results in 
the following formula for the structure factors of the 
unknown part, O(h): 

P 
O(h) = exp[--z/(TrArlfThl) 2] ~ n(p) exp(27rih • Yrt, ). 

p-----I 

(3) 

IF(h)l 2 = [R(h) + O(h)l 2 

: IR(h)l 2 + R(h)O*(h) + R*(h)O(h) 

+ IO(h)l 2 (4) 

When the representation of the unknown density is 
substituted from (3), (4) becomes a set of quadratic equa- 
tions in the unknowns, n(p). The number of equations, 
N h, is usually not equal to the number of unknowns, 
P; the equations are also ill conditioned and therefore 
their solutions are extremely sensitive to noise in the 
data. Under these conditions, a (quasi)solution of (2b) is 
obtained by minimizing the discrepancy or cost function 
(see e.g. Dainty & Fienup, 1987) 

1 f~dc. -- ~ ~ w'(h)2[le'(h) + O ( h ) l -  IF'(h)l] 2 (5) 
h 

where R'(h) and F'(h)  are modified forms of R(h) and 
F(h), defined below. The weights, w'(h) 2 are normally 
set to unity; however, in P1 symmetry, w'(0,0,0) 2 = 
1/2. The weights w~(h) 2 could also be set to be pro- 
portional to the reliability of individual measured re- 
flections, i.e. inversely proportional to their 0 2. Such a 
weighting scheme has not yet been implemented. 

The effective or intrinsic resolution of the observ- 
able structure-factor amplitudes is determined by atomic 
structure factors, by atomic motions and by crystalline 
disorder. It can be measured by the slope of the curve 
of log IF(h)] 2 vs I f rh l  2, a curve similar to a Wilson 
plot. The intrinsic resolution of the Gaussian basis set 
(2b) is (dre~/Tr) 2 = 7tAr 2. If the effective resolution of 
the measured structure-factor amplitudes is higher than 
that of the Gaussian basis functions, they have to be 
modified to 

I f ' (h ) l  = IF(h) lexp[-6z l (TrAr lYhl )2] ,  (6a) 

using a non-negative parameter 6. This procedure, usu- 
ally called 'apodization', adjusts the resolution of the 
measured diffraction pattern to that of the Gaussian basis 
set used in the solution. It is equivalent to an appropriate 
smearing of the electron density of the protein, using a 
Gaussian smearing function. The smearing is essential 
for a mathematically stable fitting of the high-resolution 
reflections (see §2.3). An analogous procedure is used to 
adjust the intrinsic resolution of the known part to give 

IR'(h)[ = IR(h)lexp[-6',l(TrZarlfrh[)2]. (6b) 
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Two points should be noted about the cost function 
(5). First, the summation includes only available exper- 
imental data, i.e. we do not include values of R(h) for 
which the corresponding F(h) is missing. Thus, the cost 
function (5) does not make unwarranted assumptions 
about unobserved reflections: their values are indeter- 
minate, as they should be. Therefore, truncation errors 
of Fourier inversions are absent and the consistent use 
of non-negative basis functions is fully justified• Second, 
the summation over h in (5) is taken only up to a certain 
resolution, which is determined by Ar. This is not a 
severe limitation, as the high-resolution structure factors 
are small to begin with, because of molecular motion and 
disorder, and are fiLrther apodized according to (6a,b). In 
order to simplify the algorithms for Fourier transforms, 
we expand the structure factors and the electron densities 
to P1 symmetry. This way, crystallographic symmetry is 
built into the starting set of R(h) and {n(p)}. If needed, 
crystallographic symmetry can be maintained during the 
solution of (5) by the addition of a real-space cost 
function (Appendix A4.) 

The equations are solved using a conjugate-gradient 
algorithm that is very efficient in the presence of non- 
linear constraints (Goodman, Johansson & Lawrence, 
1993). Although in previous versions of EDEN we 
linearized the cost function and solved it iteratively, 
in our current version of the program we use the full 
quadratic formula, (5). This eliminates the need for the 
complicated weights that appeared in paper IV. (Weights 
are still needed in the 'asymmetric' algorithm for MIR; 
see Appendix A1.) A basic constraint, non-negativity 
of the electron density, is incorporated directly into 
the conjugate-gradient optimizer by stipulating that all 
elements of the solution vector n(p) be non-negative. 
The constraint can be used in two different ways: in 
'completion mode', the added density itself is non- 
negative everywhere, while, in 'correction mode', the 
sum of the known initial electron density plus the added 
electron density is non-negative everywhere. 

A second type of constraint, which we call a 'target' 
density, is expressed in terms of the amplitudes of the 
basis functions used in the main program. They will 
be denoted by n(P)target. T h e  cost function, fspace, is 
expressed as 

P 
• -- ~AspaceP ~ ~pZ[n(p) - nGO)target]:. (7) fspace- I 

p-----I 

The overall relative weight (Lagrange multiplier), "~spacc' 
and the individual weights at each point, fi~, _< l, express 
the 'strength of our belief' in the correctness of the target 
density" the weights, # ,  may be used to emphasize • p 
or de-emphasize different regions of the target density 
(although generally they are set to 1 or 0), while/~pace 
determines the relative importance off~ a with respect ,'p' CC 
to feden" In the presence of a target density, the actual 

cost function used in the computer program is the sum 
of Lden (5) and fspace (7): 

fotal = fede, + fspace" (8)  

The fast algorithm described in paper IV is applicable 
to the quadratic cost function; in fact, fewer iterations 
are needed for convergence• For completeness, the ac- 
tual formulas that are used by EDEN are listed in 
Appendix A. 

If there is additional information, additional terms are 
added to the cost function (8). Such terms are discussed 
in §§3 and 4 of this paper. 

2.2. Basic properties of the holographic algorithm 
When we first proposed the holographic algorithm, 

we emphasized the close analogy of X-ray diffraction 
to holography. In the following paragraphs, we will 
examine the holographic algorithm from three different 
viewpoints• Let us start from the traditional difference 
Fourier analysis (or omit maps) for the completion of 
the electron density of the unit cell when part of the 
structure is known. In terms of the complex structure fac- 
tors of acentric reflections (see Fig. 1), the unweighted 
difference-Fourier solution for the missing part is the 
set of vectors O(h), each of which connects R(h) to the 
closest point, 02, on the circle with radius F(h). Omit 
maps sometimes use weights for the measured structure 
factors that change the magnitude but not the phase of O: 

IO(h)[--]Ws~m(h)lF(h)l-  Ig(h)l • (9) 

These weights were first proposed by Sim and have been 
generalized many times since. [For recent publications, 
see Read (1986, 1990); also a very clear derivation by 
Viterbo in Giacovazzo (1992, p. 393).] In general, O(h) 
is not collinear with R(h) for acentric reflections• The 
Sim weights give an O(h) along R(h) that is closest to the 
statistically most probable solution (e.g. 01 in Fig. 1). 

The solution of (5) is not unique: this is an expression 
of the well known phase problem of crystallography 
(paper II). The equivalent mathematical statement is that 
an arbitrary element of the null space of an 'encoding' 
operator can be added to any vector n(p) that minimizes 
the cost function (5). A simple geometric representation 
of this lack of uniqueness for acentric reflections, in the 
plane of complex numbers, is shown in Fig. 1. Since the 
phase of IF(h)l is unknown, any O(h) that connects the 
tip of R(h) to any point on the circle with radius IF(h) I 
results in the same value of the cost function• Thus, 
the difference between any two of the vectors O(h) that 
satisfies this condition belongs to the null space of the 
encoding operator. However, constraints on the resulting 
electron density or the existence of additional diffraction 
data (e.g. MIR or MAD data) reduces the arbitrariness 
of the solution. 
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It can be seen from Fig. 1 that the unweighted 
difference Fourier solution is equivalent to the solution 
of (5) when, in addition, the null-space contribution is 
also minimized.* If there are no other constraints, the 
same solution will be found iffeoe n in (5) is minimized by 
a gradient search, starting at R(h). Indeed, as described in 
paper IV, the addition of a term that minimizes the null- 
space contribution [f,.ll of equation (11) of that paper] 
did not seem to make any difference and, therefore, is 
no longer used. 

Second, from the point of view of holography, it was 
shown in paper II that the unweighted difference-Fourier 
solution is an equal superposition of the correct electron 
density of the missing part and its holographic dual 
image. These two solutions, O l and 0 3, are shown in 
Fig. 1 for an acentric reflection. As mentioned above, 
a consequence of the curvature of the circle of radius 
IF(h) I is that the midpoint between the correct solution 
and the dual solution is given more accurately by the 
weighted formula (9). It can also be seen from Fig. 1 that 
the weights are important only when the magnitudes of 
IF(h)l and Ig(h)l are comparable. When IF(h)l >> [g(h)l, 
the known part gives very little phase information. When 
the opposite is true, [F(h)l << IR(h)l, the phase of 
O(h) is almost perfectly defined and the weights are not 
needed. In all cases but the last one, the main limitation 
on the reconstruction of the true electron density of 
macromolecules is the presence of the dual image. 

From a third point of view, it was shown by Brran 
(Brran & Szrke, 1995) that the difference-Fourier so- 
lution is equivalent to the assumption that the electron 
density is equally well known in all parts of the unit cell. 
In other words, it is assumed that the missing electron 
density is distributed about equally in the region of the 
known part of the structure and the unsolved part of the 
structure. 

Several conclusions can be drawn from this discus- 
sion; some are well known, some are less well known. 
First, if there is no other information, the (weighted) 
difference Fourier solution is indeed the best solution. 
This agrees with L~inczos's dictum. In fact, such is 
almost never the case: for instance, it is always known 
that the electron density is non-negative everywhere in 
the unit cell. We have noted above that algorithms that 
restrict O(h) to be parallel to R(h) do not necessarily 
satisfy non-negativity of the electron density. 

Second, it was shown above that the null space of the 
holographic encoding operator, for acentric reflections, 
consists of all the vectors that connect points on the 
circle of radius IR(h)l in Fig. 1. This null space has N h 
dimensions, but it is of finite measure: its measure in 
each dimension is the circumference of the circle. There 
is a point on the circle that corresponds to the correct 
electron density (the correct image) and a second point, 

* Such a solution is equivalent to the (Moore-Penrose) generalized 
inverse of the (singular) encoding operator (Bertero, 1989). 

related symmetrically to it with respect to the direction 
of R(h), that corresponds to the holographic dual image. 
Let us ask now what happens to the null space and to 
the dual image when additional information becomes 
available. In general, the additional information limits 
the region of the null space that remains accessible to 
O(h). As additional information is added, the correct 
solution remains accessible while the probability that 
the dual image remains accessible decreases. When the 
known part is a large fraction of the molecule, on the 
average, the tip of R(h) gets close to the circle and 
the magnitude of O(h) gets smaller. This results in an 
apparent paradox, as the increase of the known part of 
the electron density does not change the circumference 
of the circle or the degeneracy of the cost function on it. 
Therefore, the measure of the arbitrariness of the solution 
does not seem to be smaller when a larger fraction of the 
molecule is known. The resolution of the paradox is that, 
as the unknown part gets smaller, ]O(h)] gets shorter on 
the average and less of the circle is effectively available. 

A third conclusion is that, since the cost function (5) 
contains terms only for the measured intensities, the cal- 
culated structure factors that correspond to unmeasured 
reflections may assume any value. This is the correct 
mathematical expression of those being unknown. When 
Fourier syntheses are treated in the usual way, such un- 
known values are automatically assigned the value zero. 
This is the chief reason for truncation artifacts when 
electron-density maps are calculated by (inverse) Fourier 
transformation. A known way of dealing with these 
problems is through maximum-entropy techniques. * The 
holographic method does not have these problems but it 

• The maximum-entropy solution selects the flattest non-negative 
electron density that is compatible with the experimental data (Gull 
& Daniell, 1978; Skilling & Gull, 1985). 

i 

Fig. 1. Geometric representation of equation (4) in the complex plane 
for acentric reflections. R(h) is the vector representing the structure 
factor of the known part of the electron density. The circle around 
the origin has the radius IF(h)l. Any vector O(h) that starts at 
the tip of R(h) and ends on the circle satisfies equation (4). The 
unweighted difference Fourier solution is O2(h). If the 'correct' 
solution is Oi (h), the dual image is represented by O3(h). The Sim- 
weighted difference Fourier solution is the midpoint between the 
tips of Ot (h) and O3(h). 
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is not completely equivalent to the maximum-entropy 
reconstruction. 

2.3. Limiting accuracy of  the holographic algorithm 

The representation of the unknown density, presented 
in (2b), uses an overcomplete set of Gaussian basis 
functions that are not mutually orthogonal. The use- 
fulness and accuracy o f  the holographic algorithm are 
determined by the answers to the following mathematical 
questions. How well can the electron density of an 
arbitrary protein be approximated by the superposition 
of such basis functions (with appropriate coefficients)? 
Is there a well defined algorithm to find such a set 
of coefficients, given the electron density? Is the set 
of coefficients unique? And, finally, if two sets of 
coefficients are similar (close to each other), are the 
resulting electron densities close to each other? Fortu- 
nately, mathematicians have done extensive research on 
such non-orthogonal redundant basis sets: they are called 
frames. Excellent discussions can be found in a book by 
Daubechies (1992) and in a review by Heil & Walnut 
(1989). Some of their important results are described in 
Appendix B and are summarized below. 

The mathematicians' answer to the first question is 
that electron densities can indeed be approximated well 
by such representations, if the electron density does 
not vary too wildly. Restated in technical language, 
the requirements are that the diffraction pattern and the 
basis set should have similar intrinsic resolutions and 
that the grid spacing should be about twice as fine 
as required by the corresponding Nyquist criterion. In 
our algorithm, this is achieved by the choices outlined 
in §2.1. It is also true that two representations with 
similar coefficients do yield similar electron densities. 
On the other hand, a given electron density can be 
represented by several different sets of coefficients. In 
fact, there are many possible algorithms to find a set 
of coefficients that approximate the electron density of 
the crystal equally well, of which the algorithm used by 
EDEN is one (good) example. Conversely, two similar 
electron densities produce similar sets of coefficients in 
our algorithm, which is therefore mathematically stable. 

In the rest of the section, we investigate the accuracy 
of the representation of the electron density by EDEN 
quantitatively: first by representing a single Gaussian 
electron density in a general position, using Gaussians 
on a grid, then by recovering a model protein. 

In the first set of tests, we placed a single Gaussian 
electron density onto a generic position (i.e. not nec- 
essarily on a grid point). We calculated its diffraction 
pattern and we found the best representation of the 
diffraction pattern in terms of Gaussians on a grid, 
using the program BACK (see Appendix A5.3). We 
then calculated the diffraction pattern of the latter and 
compared the phase and amplitude accuracy of the result 
to the accurate diffraction pattem. Alternatively, we 

obtained an approximate representation of the original 
Gaussian electron density in terms of Gaussians on 
the closest grid points by equating their moments. The 
calculations are presented in terms of a unit grid spacing, 
i.e. the grid points are (0, 0, 0) (1, 0, 0) etc. in a simple 
grid and the points (1/2, 1/2, 1/2), ( -  1/2, 1/2, 1/2) etc. 
are added to them in a body-centered grid. The value 
of r/ is 1.0 for the simple grid and 0.75 in the body- 
centered grid, in accordance with Appendix A1. The 
results are plotted in Fig. 2 for both a simple and a body- 
centered grid. As expected, the maximum phase error in 
a simple grid occurs at the point (1/2, 1/2, 1/2) and in 
a body-centered grid at the coordinate values (1/2, 0, 0), 
(0, 1/2, 0), (0, 0, 1/2). In the simple grid, the maximum 
phase error is 47 ° and the corresponding amplitude error 
is 28%. In a body-centered grid, the maximum phase 
error is 26 ° and the corresponding amplitude error is 
20%. With the analytic approximation (data not shown), 
the maximum phase and amplitude errors are again 47 ° 
and 28% for a simple grid but they are 40 ° and 26% 
for a body-centered grid. The average phase errors are 
27 ° and 18 ° for a simple and a body-centered grid, 
respectively. The phase error for a complicated molecule 
that is uniformly distributed in the unit cell is expected 
to be less. Note that the recovery of the electron density 
is more accurate with our new values of Zlr and 71 than 
those shown in §2.1 of paper IV. 

In our next set of tests, we repeated the recovery 
of part of the thaumatin model structure, presented 
in paper IV. As we changed the algorithm from the 
iterated linearized system of equations of paper IV to 
the quadratic cost function presented in this paper, we 
repeated the calculations for the values Ar  = 1.8/~, 

4O 

~ 20 

!,o 

0.0, 0.0, 0.0 0.5, 0.0, 0.0 0.5, 0.5, 0.0 0.5, 0.5, 0.5 

Position of Gaumian with respect to the Grid 

Fig. 2. Phase errors of the diffraction pattern encountered when a 
Gaussian electron density, in a general position, is approximated 
by a set of Gaussians on a grid, as determined by a non-linear 
interpolation using BACK. [] Simple lattice; o body-centred lattice. 
The curves represent the phase error as a function of the position 
of the Gaussian along straight line segments, whose end points 
are written on the x axes of the curves. In a simple lattice, the 
linear interpolation (not shown) does equally well but, for the 
body-centered case, the linear interpolation does worse. 
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71 - 0.28 and 6 - 1 as in paper IV. The results 
are presented in Fig. 3(a). When it is compared to 
the corresponding Fig. 2 of paper IV, we see that in 
general the new quadratic algorithm is more accurate and 
converges somewhat better than the old one. Without 
a solvent mask, 70 out of the 207 residues could be 
recovered. When a hard solvent mask that covered half 
the unit cell was imposed, as many as 160 residues out 
of the 207 (or 77%) were found essentially perfectly. 
The recovered electron density was within 10% of that 
of the original model. 
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Fig. 3. The recovery of missing residues from the thaumatin model was 
evaluated by calculating the weighted averaged phase difference 
between the Ftrue data and the structure factors corresponding to 
the truncated model before and after EDEN was used to recover the 
missing electron density. Open circles show the phase difference, 
before recovery, between the truncated model and the complete 
model• Closed circles show the phase difference after an EDEN run 
without a solvent mask; and squares show the phase difference after 
an EDEN run with a solvent mask. In (a), J r  = 1.8/~,, Ii -- 0.28 
and b = 1 as in paper IV. In (b), ~ r  = 1.4/~, 7/ = 0.75 and b = 
0.6, which corresponds to an input resolution di,p = 2.0 ~. 

In Fig. 3(b), we used the new set of Ar  = 1.4/~, 
71 -- 0.75 and 6 = 0.6 that corresponds to an input 
r e s o l u t i o n  din p = 2 . 0 / ~ .  As expected, the phase accuracy 
of the recovery is very good. The convergence of the 
algorithm without a solvent mask is also better: in 
fact, 90 out of 207 residues (i.e. 43%) were recovered 
essentially perfectly. With a solvent mask or a solvent 
target function, we got perfect recovery only up to 120 
residues. This is a respectable 58%, but it is less good 
than using the previous values of Ar  and r/. We do 
not understand the reasons for the difference. Fig. 4 is 
similar to Fig. 4(a) of paper IV. Note the absence of 
the systematic shift of the electron-density contour with 
respect to the model that was quite noticeable on those 
figures. Our current understanding, as opposed to what 
we wrote in paper IV, is that the shifts were caused 
by a bug in the computer program that we have since 
eliminated. (We apologize for it.) With the new values 
of Ar  and 71, after regridding at a 2:1 ratio, the resulting 
electron-density map is very similar to the traditional 3:1 
finer electron-density maps to which crystallographers 
are accustomed. 

Some additional tests show the power of the positivity 
constraint in model problems that have no noise or sol- 
vent. E D E N  solved the model of staphylococcal nuclease 
at 3/~ resolution using a low-resolution (,~ 6 A) solvent 
target that covered 61% of the unit cell and no other 
information. (For details of the model used, see §3.3 
below.) A similar result was reported by Bricogne (1993) 
using a very sophisticated algorithm in reciprocal space. 
We recall that Brran & Szrke (1995) found that the 
phases of the structure factors of a model protein could 
be recovered completely when the electron density was 
given in a little more than half the unit cell. The above 
results seem to contradict recent conclusions of Millane 
(1996). We interpret Millane's conclusion as establishing 

6 

Fig. 4. A sample (residues 18-23) of the electron density recovered 
for the thaumatin model after omitting residues ! through 120 using 
a solvent mask. Note that the leftmost of the three ,4 strands is part 
of the known part of the model and, consequently, electron density 
for this region is not recovered. 
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an upper limit to the additional information needed to 
solve the crystal structure. In our opinion, he does not 
exclude the possibility of solving the structure with less 
information. 

2.4. Convergence of the gradient solver and other 
methods of solution 

Recovery of the electron density by the holographic 
method is based on finding the minimum of the cost 
function (8). The difficulty of this task can vary from 
the easy to the impossible, depending on the number 
of minima and the topography of the cost function. In 
easy cases, the cost function has a single minimum and 
the conjugate-gradient solver used in EDEN finds it. In 
fact, Figs. 3 and 4 show that in many (supposedly hard) 
cases the algorithm converges well. In more difficult 
problems, multiple local minima of the cost function (8), 
not all of the same depth, are expected. Their presence 
was clearly seen in B6ran's work (B6ran & Sztike, 
1995). It was found there that a Monte Carlo (simulated- 
annealing) algorithm, applied in reciprocal space, was 
able to deal with the difficulty. It was also observed that, 
when the amount of available information is marginal, 
the speed of convergence of the algorithm slows down 
exponentially. We will argue below that the situation in 
protein crystallography can be even worse: the number 
of minima of the cost function, with similar measures of 
goodness, can be so large that it is practically impossible 
to find the best one. 

Let us inquire into the mathematical properties of the 
holographic method. The value of the cost function (8) 
is determined by the values of the electron density, n(p), 
at each lattice point. As there are P lattice points, it 
is a (real-valued) function defined in a P-dimensional 
space. Usually, that space has a very large number of 
dimensions: the number of lattice points, P. In realistic 
problems, P can be 104-105. On the other hand, the 
number of distinguishable densities at each lattice point, 
N, is limited. In practice, two electron densities that 
differ by a 10% random variation are indistinguishable to 
a human observer. In other words, N is of the order of 10. 
Therefore, the total number of possible electron densi- 
ties, that is of the order of N e, is an astronomically large 
number: 1010°0°-101°0°0°. The difference between any 
two densities, as measured by the integrated root mean 
square of the density, is of the order of NP, i.e. 105-106. 
This (Cartesian) distance between any two points in 
the multidimensional configuration space is thus many 
orders of magnitude smaller than the number of points 
in the space. There are other well known systems in 
nature that exhibit similar mathematical properties. The 
best known example is the genetic makeup of living 
organisms. For example, a molecule of DNA with P 
base pairs is able to encode 4 P different sequences, but 
only P mutations are needed to transform a given DNA 
molecule to any other one (Eigen, 1992). 

There are other similarities between the mathematical 
properties of the crystallographic algorithm and the 
genetic code. The variables of the holographic algor- 
ithm are (discretized) electron densities, while measured 
diffraction intensities that provide constraints are in re- 
ciprocal space. The connection between them is given by 
the Fourier transformation, which has the property that 
a (positive) change in any n(p) will, in general, increase 
the magnitude of some structure factors and decrease the 
magnitude of others in complicated ways. In the genetic 
code, it is the sequence of the base pairs in DNA that 
determines the properties of a given protein, while the 
survival of the individual and its reproductive success 
depends in very convoluted and not obvious ways on 
the DNA sequence of a particular protein (Kauffman, 
1993). A change in any base pair will have complex 
effects on various properties of the individual: some of 
them increasing its average reproductive success, others 
decreasing it. 

In the crystallographic problem, when the information 
becomes marginal, the cost function may have a very 
large number of minima. Indeed, if the domain of at- 
traction of the average minimum has radius R, measured 
in configuration space, the number of expected minima 
is (NP/R) P. In realistic problems, P is so large that, even 
if the domain of attraction of the minima is within 1% of 
the whole space, the number of minima can still be large 
(2 x 104 for P = 1000). The barriers between neighboring 
minima may form a tree-like structure or may be even 
less tractable. In most such cases, a simulated anneal- 
ing (or any other Monte Carlo algorithm) would show 
critical slowing down, Le. the computer time to solve 
the structure diverges exponentially. In practical terms, 
that means that the structure cannot be solved using the 
information at hand. 

We will now present a curious mathematical property 
of the holographic reconstruction algorithm. Starting 
from a uniformly filled unit cell [n(p) = constant for all 
p], there are straight line paths [in the multidimensional 
n(p) space] on which the cost function is continually 
decreasing and that lead to each one of the local minima 
of the cost function, as well as to the global minimum. 
The derivation of this property is straightforward but 
tedious. The theorem shows that the ridges that separate 
local minima of the cost function cannot be higher 
than the value of the cost function corresponding to the 
correct number of electrons in the unit cell distributed 
uniformly. The proof of the theorem assumes that the 
electron density corresponding to the local minima and 
to the global minimum of the cost function is known, 
so the direction of the search is known. Unfortunately, 
in a space of such high number of dimensions, finding 
the appropriate directions is not an easier problem than 
finding the global minimum of the cost function itself. 

In §3.2 below, we present studies in which we sys- 
tematically vary the amount of available information. 
We did these studies on MIR models in order to be 
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sure that the solutions are unique. When the available 
information was marginal, we have found many disjoint 
minima with similar values of the cost function but with 
large differences in the electron-density distribution. In 
such situations, especially when experimental deviations 
are present, it is not clear whether any particular solution 
of the crystal structure is more reliable than any other 
one. Such difficulties were discussed by Br~d rn  & 
Jones (1990), Baker, Krukowski & Agard (1993) and 
Kleywegt & Jones (1995). A fundamental but usually 
unstated assumption of protein crystallography is that 
among all the solutions only one gives a chemically 
sensible structure. Our studies cannot contradict such an 
assumption but they cannot support it either. 

3. Multiple isomorphous replacement (MIR) 
and multiple anomalous dispersion (MAD) 

3.1. Derivation of equations for MIR 

Crystal structures can be solved by multiple iso- 
morphous replacement (MIR) if the only change in 
crystal structure is the addition of heavy atoms. In 
other words, it will be assumed below that the native 
protein's structure is unchanged when heavy atoms are 
added. MIR methods require that individual data sets 
be taken for each derivative and that the positions of 
the heavy atoms and their occupancies be found by 
Patterson or direct methods. Conventional MIR methods 
then proceed to find the phases of the native protein. 
Very often, the resulting phase set does not give electron- 
density maps that are easily interpretable. This is the 
stage where the holographic method can be of advantage. 
While in principle the holographic method is equivalent 
to the conventional method of finding the phases of the 
structure factors of the native protein, we expect that 
incorporating all known constraints consistently should 
improve the attainable accuracy of the solution. In a test 
case using real data, presented in §3.4, EDEN resulted 
in a clear improvement over conventional methods. 

From a mathematical point of view, heavy-atom 
derivatives (as well as anomalous dispersion) increase 
the number of independent equations with respect to 
the unknowns. With a sufficient number of derivatives, 
the phase problem should therefore be solvable. On the 
other hand, it is very difficult to predict the convergence 
properties of different algorithms. We will present two 
mathematically equivalent versions of MIR: a symmetric 
and an asymmetric algorithm. In our synthetic test cases, 
the asymmetric algorithm converges better than the 
symmetric one does and they both converge less well 
than traditional methods do. The symmetric algorithm 
is much better suited to the treatment of real data as 
it is less sensitive to experimental errors. More will be 
written about this subject in §3.4. 

The relevant equations in EDEN are simple general- 
izations of (1)-(6a,b). The unknown density (2b) is that 

of the native protein. So is the structure factor, O(h), of 
(3). Suppose M + 1 sets of diffraction amplitudes have 
been measured: one for the native and one each for the 
M derivatives. Suppose also that the positions of the 
heavy atoms and their occupancies were found using 
Patterson or direct methods. The calculated structure 
factors for the heavy atoms then belong to the known 
part of the structures. For the mth derivative, they will 
be designated Rm(h). The measured structure factors of 
the mth derivative will be denoted IFm(h) I. Then, (4) 
can be generalized to 

IFm(h)l e = ]Rm(h) + O(h)l 2 

= IRm(h)l 2 + Rm(h)O* (h) 
+ R~(h)O(h) + IO(h)l 2, (lO) 

where m = 0 . . . . .  M (m = 0 designating the native 
protein). In Fig. 5(a), these equations are presented in 
their well known geometrical form for two derivatives. 
It can be seen that, for each value of h, solving (10) 

( h 
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Fig. 5. Geometric construction in the complex plane for an acentric 
reflection in multiple isomorphous replacement. (a) is the traditional 
construction for the symmetric algorithm, equation (10). The circle 
centered on the origin has a radius of IF,,(h)l, the structure factor of 
the native. The other circles have radii ]Fm(h) I, they are centered on 
-Rm(h). (b) is the corresponding construction for the asymmetric 
algorithm, equation (12). The circle centered on the origin has a 
radius of IF,,(h)l. The equations for the straight lines can be derived 
from the equations for the derivatives. The points of intersection in 
(a) and (b) are the same, as expected. 
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is equivalent to finding the intersection of the circles 
that are centered on the negative value of the structure 
factors of the heavy atoms, -Rm(h), and whose radius 
is the value of IFm(h) I. This is the same as the (simple 
minded) solution of the traditional MIR algorithms (see 
e.g. Giacovazzo, 1992). In the symmetric algorithm, 
(10) are solved by minimizing a cost function that is 
analogous to (5): 

M 
__ I t 2 E l  t feden ~ ~ )~m ~ win(h) [] m(h)] - IRm(h) + O(h)l] 2. 

m=0 h 
(11) 

In (1 1), we introduced weights A m that can express 
the reliability or quality of the measurements of each 
derivative. The default is A m = 1. If derivatives have dif- 
ferent intrinsic resolutions, (6a,b) can be generalized by 
allowing each equation in (1 l) to be apodized separately; 
see Appendix A 1. 

The asymmetric algorithm is obtained from (10) by 
subtracting the equation for the native from the equation 
for each derivative. The equations are 

IFo(h)] 2 = ]g0(h)] 2 + R0(h)O*(h) + R0(h)O(h) 

+ IO(h)l 2, 

IFm(h)l 2 -  IF0(h)l 2 

= IRm(h)l 2 - [ R o ( h ) l  2 + [ R m ( h ) -  Ro(h)]O*(h ) 
+ [RTn(h ) - Ro(h)]O(h ), m = 1, . . . , M .  (12) 

Equations (12) are solved by minimizing the cost func- 
tion 

' (A 0 ' ~  w~,(h)2[IF~,(h)l - IR~,(h) + O(h)l] 2 
f e d c n  - -  ~ h 

M 

+ ~ Am Y~[w~(h)2/lRm(h)l 2] 
m = l  h 

x {IR,,,(h)I 2 -  IRo(h)[ 2 -IF, , ,(h)l  2 

+ [F0(h)l 2 + [Rm(h ) - R0(h)]O* (h) 

+ [ R * ( h ) -  R0(h)]O(h)}2). (13) 

In the asymmetric algorithm, weights similar to those 
described in paper IV have to be used in order to 
avoid numerical instability. Equations (12) and (13) can 
also be written in a more general form that allows 
for different resolutions for the native and for each 
of the derivatives. Actual equations used for the cost 
function, weights and the calculation of the gradient 
are written out in Appendix A1. Equations (12) can 
also be solved geometrically, similarly to the traditional 
solution of (10). As presented in Fig. 5(b), the solution 
is obtained by the intersection of a circle (for the native) 
and straight lines (for each derivative.) The straight 
line for each derivative goes through the same two 

points where the analogous circles intersect in Fig. 
5(a). As expected, the solution does not change but it 
may have different convergence properties and different 
sensitivity to imperfect data and noise. We found that, 
for experimental data on real proteins, the symmetric 
algorithm is much more stable than the asymmetric one. 

Several remarks are in order. First and simplest: if no 
part of the native is known, R0(h) = 0 [for h # (0,0,0)]. 
If parts of the native protein are known, e.g. from 
molecular replacement, the known part can be added to 
Rm(h) in reciprocal space, as well as to the starting set 
of n(p) in real space. In complete analogy to the case of 
a single data set, EDEN can be run in correction mode. 
It is thus capable of correcting the density of any part 
of the molecule that is guessed incorrectly. Second, it is 
clear from our derivation that solvent (or other) targets, 
as well as crystalline or non-crystalline symmetry, can be 
used together consistently. Third, it should be reiterated 
that the minimization of the cost function (11) or (13) 
is carried out by changing the density in real space, as 
opposed to the traditional methods that solve the system 
of equations (10) for m - 0 . . . .  , M for each h separately. 

3.2. Equations for MAD 
Multiple anomalous dispersion (MAD) can be treated 

very similarly to MIR. As MAD data sets are taken on 
a single crystal, the basic assumption of isomorphism 
is always correct; the main problem with the method is 
usually the low signal-to-noise ratio. The fundamental 
assumption in EDEN's treatment of MAD is that the 
structure amplitudes of the unknown part (which will 
be called the native) have no anomalous dispersion, 
i.e. f "  for all the unknown atoms is zero and their f '  
is independent of X-ray energy. In other words, the 
anomalously scattering atoms are always considered to 
be 'heavy atoms'. We will start from the point where the 
anomalously scattering (heavy) atoms have been found 
by Patterson methods or by direct methods and their 
structure factors, including the anomalous part, have 
been calculated. In a P1 crystal, the h _> 0 data set 
can now be treated exactly as a derivative in MIR; both 
the symmetric and the asymmetric algorithms (10) and 
(12) are applicable. As is well known, in P1 symmetry, 
the h _< 0 reflections are an independent data set. The 
easiest way to use them in EDEN is to create a 'flipped' 
data set by negating all the indices of the reflections, 
h --~ - h ,  at the same time flipping the signs of the 
phases of the heavy atoms and declaring this new data set 
to be a separate derivative. As shown in Fig. 6, Friedel's 
relations apply to the structure factors of the native 
because that part of the structure has no anomalous 
dispersion. Therefore, the unknowns in this 'flipped' data 
set are the same as those for the h _> 0 data set. In higher 
symmetry, similar considerations apply. It is clear that 
such data sets can be used together with MIR data. The 
only difficulty one might encounter in this procedure is 
that the anomalous data sets are weighted too heavily. 
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3.3. Characterization of the MIR cost-function surface 

The first test of EDEN in its MIR mode was to verify 
that the program is capable of solving easy problems. 
The atomic coordinates and B values of staphylococcal 
nuclease [a 149 residue protein (Somoza et al., 1995)] 
were used to produce a 'native' diffraction pattern, 
IF0(h)l, by removing the phases from its calculated 
diffraction pattern. The model of staphylococcal nucle- 
ase itself was modified by running BACK and FORTH 
on it (see Appendix A5) so that a perfect solution, i.e. 
fc,~e, = 0 of (11) or (13), was attainable. 'Derivatives' 
were produced by placing heavy atoms into known 
positions. The calculated structure factors of the heavy 
atoms were used for R,,,(h) in (11) and the magnitudes 
of ]Rm(h ) + F0(h)] were used for 'derivative data'. The 
EDEN solver was started either from an empty unit 
cell or from a unit cell with a random electron density, 
nr~,(p), and from the corresponding structure factors. 

We expected that the cost function (11) or (13) 
would have a single global minimum if there are several 
derivatives and if the added atoms are heavy enough. If 
the number of derivatives is diminished and the number 
of added electrons is reduced, we expected that multiple 
minima of the cost function would develop. Furthermore, 
we expected that under less favorable conditions the 
number of minima might increase considerably, yielding 
local minima ('solutions') with similar values of the 
cost function, but very different structures (§2.4). The 
questions we wanted to answer are: How many minima 
are there, at least approximately? How are their depths 
distributed and how high are the barriers between min- 
ima? Do the minima have a hierarchical distribution, i.e. 
are there a few large minima surrounded by many small 

f'(h) i/lll~f'(h) 
/ /  ] fo (h) 

\ . . \ \~o(-h)  

f '(-h)~.j~ 

r"(-h) 

Fig. 6. Geometric construction in the complex plane for an acentric 
reflection with anomalous dispersion. The structure factor for the 
'native' is denoted by O(h). The structure factor of the anomalously 
diffracting atoms has three parts. The part that is independent of 
X-ray energy is denoted by fi). The X-ray energy dependent part 
has a component that is parallel to .]i), it is denoted by ft  and a 
perpendicular component denoted by f ' .  The figure is drawn for a 
Bijvoet pair, h and - h .  The measured structure factors are drawn 
in broken lines. If the figure for the --h reflection is reflected about 
the horizontal axis, the structure factor for the 'native' overlaps that 
for h. 

minima? Are there any phase-transition-like singularities 
on the cost-function surface? As discussed in §2.4, these 
properties of the cost-function surface determine whether 
the crystallographic reconstruction problem is easy, hard 
or impossible. 

The goodness of the solution could be judged by 
several measures: by the root-mean-square deviation of 
the measured structure factors from the absolute values 
of the calculated structure factors [this will be referred to 
as the standard deviation (s.d.)], by the crystallographic 
R factor and by the distance of any given minimum from 
the perfect solution. Distances between two densities 
n 1 (p) and n2(p) were measured by using (54). Of course, 
the distance from the perfect solution can only be used 
in artificial tests. On the other hand, when optimization 
is run from different starting points or when it is started 
from several random perturbations of a previous mini- 
mum, the distance among the various solutions, together 
with their standard deviations and crystallographic R 
factors, can be used very advantageously to monitor the 
progress of the program and to see whether different 
solutions converge into a single basin of attraction or 
whether there are many disjoint basins. 

All our tests were run at 3 ~ resolution. We used three 
'derivatives' of the staphylococcal nuclease model with 
two atoms of Z electrons each added to each asym- 
metric unit. With three derivatives, the probability of 
an ambiguous phase determination in a traditional MIR 
program is much reduced with respect to two derivatives. 
The program PHASES (Furey & Swaminathan, 1990) 
with Z --- 90, 60, 30 gave excellent solutions of the 
structure with phase errors of 22, 22, 14 °, respectively. 

Our first set of tests was started with an empty model 
for the native. The empty start is expected to be optimal, 
as discussed in §2.4. The symmetric algorithm was able 
to solve the structure with Z >_ 90. At Z = 60, we did not 
get convergence. The asymmetric algorithm did much 
better. It solved the protein for Z _> 43. At Z - 42 and 
less, it abruptly ceased to converge. We tried a 'mild '  
simulated annealing on Z - 40 and did not successfully 
converge on the correct solution. 

In the second set of tests, we started the conjugate- 
gradient optimizer from a random set of densities in the 
unit cell. This so-called multistart algorithm is described 
by Rinnoy Kan & Timmer (1989). At the crudest level, a 
random start is almost always worse than an empty start. 
On a less crude, but still qualitative, level, we summarize 
the results of EDEN runs with random starts for various 
values of Z: 

Number Number of solutions by class 
Z of trials Perfect Good Fair Poor 

100 20 6 11 3 0 
80 20 5 2 5 8 
60 20 1 5 8 6 
40 10 0 0 2 8. 
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The meaning .of a perfect solution is clear. Good so- 
lutions were 'almost perfect' in the sense that they 
were clearly recognizable in the electron-density maps 
and they did not have any gross errors either in the 
protein part or in the (empty) solvent region. In the 
usual crystallographic display programs O or FRODO, 
such a solution would be indistinguishable from a perfect 
one. Fair solutions, should also be largely traceable, but 
they would have several regions that were in need of 
iterative refinement. Finally, poor solutions are, by and 
large, wrong. 

On a more quantitative level, we will discuss the 
results of the 20 pseudo-random starts with Z -- 100. 
Table 1 reports all three measures - standard deviation, 
distance from the perfect solution and R factors - as 
well as the qualitative observation, where letters g and f 
denote good and fair results. (Essentially perfect results 
have no letter.) The numbers 75-94 in column 2 identify 
the seeds that were used to generate the initial random 
distributions. It is clear from this table that both the 
values of the ending R factor and standard deviation 
can spot a perfect solution. The same measures are less 
useful for distinguishing good and fair solutions. For 
that, a much better measure can be obtained from the 
K(K- 1)/2 mutual distances of K solutions. The mutual 
distances of the 11 good results divide into two clusters, 
see Tables 2 and 3. The distances within each cluster are 
of the order of 4500 e, while the distance between the 
two clusters is ,~ 12 500 e and the distance of each cluster 
from the perfect solutions is -..,9000 e. (For comparison, 
the distance of the empty model from the correct solution 
is ,-~30 000 e and the starting points of the random starts 
from the correct solution are -,~50 000 e.) The three fair 
solutions (Table 4) are -,~ 18 000 e away from each other 
and at a similar distance from the perfect solution. It 
is clear that Table 4 shows three distinct deep basins 
of attraction in addition to the correct one. However, 
there are apparently many more shallow local minima 
of the cost function. Similar tables were produced for 
Z - 80, 60 and 40. As expected, as Z is decreased, the 
mutual distances even among the good and fair solutions 
get progressively larger, while the poor solutions get as 
far as ,-,40 000 e from each other. This shows that, in 
these harder cases, the algorithm does not converge at 
all. We have not found clear evidence for clustering of 
the solutions into well defined basins of attraction at 
these lower Z's. 

The third set of tests probed how far a solution could 
be perturbed and still return to the starting point that 
is a local or global minimum of the cost function. 
The electron density n(p) of a local optimum or of the 
perfect solution was perturbed by a set of pseudo-random 
numbers, uniform in [0, 1), scaled by an appropriate 
factor. The negative densities were then set to zero and 
the solver was run to find the closest local minimum. 
Tables 5 and 6 show the results for Z = 40 and Z - 20, 
respectively, when the perfect solution was randomly 

Table 1. Analysis of trials with Z = 100 

s.d. -- standard deviation. Start and end distances are given in 
electrons. 

Start End Start End End R 
No. Seed s.d. s.d. distance distance factor Class 

1 75 35.4 6.1 50564 8915 5.6 g 
2 76 35.4 8.8 51481 13675 9.5 f 
3 77 35.8 0.07 50751 136 0.0 
4 78 36.0 0.08 50667 104 0.0 
5 79 35.4 0.07 50836 125 0.0 
6 80 36.2 6.3 50206 9451 6.1 g 
7 81 35.2 5.1 49003 9291 5.4 g 
8 82 35.4 6.7 51611 11847 7.2 f 
9 83 34.9 5.4 51359 9932 5.8 g 

10 84 36.0 5.8 50196 10453 6.3 g 
11 85 35.6 6.1 50335 8199 5.4 g 
12 86 35.7 9.9 51075 21956 12.9 f 
13 87 35.5 0.03 51067 95 0.0 
14 88 35.5 6.8 50985 10085 6.7 g 
i 5 89 36.0 6.6 49961 9984 6.5 g 
16 90 35.9 6.2 51593 8260 5.4 g 
17 91 35.1 0.07 51189 126 0.0 
18 92 36.0 6.7 50443 9768 6.4 g 
19 93 35.5 0.08 49642 129 0.0 
20 94 35.9 6.5 50259 9536 6.2 g 

perturbed with a scale whose distance from the original 
(perfect) solution is comparable to the total number 
of electrons (30 000). Surprisingly, these large random 
perturbations do not take the solution out of the basin of 
attraction of the global minimum. A similar study was 
done for Z = 40, where the solver converged to a poor 
local minimum when started from the empty unit cell. 
We perturbed this local minimum by comparably large 
random perturbations and observed that even in this case 
we could not escape its basin of attraction. The latter 
results are presented in Table 7. An additional surprising 
feature of this study is the 'roundness' of the basin of 
attraction, as expressed by the very small variation of 
the initial standard deviation after the perturbation. 

One possible reason for the difficulty of escaping local 
minima is that major basins of attraction are determined 
mainly by the phases of the low-resolution reflections. 
We tested this by strongly apodizing the perfect solution, 
running BACK and FORTH on the result and starting the 
solver from the result. Such a procedure is equivalent 
to the strong smearing of the electron density. On 
observation, individual features of the protein were com- 
pletely obliterated. The initial distances of the smeared 
e voxel- i  files from the perfect solution were ,,-,36 000 e 
((5 = 16) and ~ 4 0 0 0 0 e  (6 = 64). The number of 
structure factors that were appreciable [greater than 10 -4 
of F(000)] and having the correct phases, were 190 and 
36, respectively, out of -,,3000 for the 3/~ resolution data 
set. The results were that all our runs with Z = 40 or 30 
converged to the perfect solution. When the number of 
electrons was lowered to Z - 20, the solutions were not 
perfect, but the case with 190 correct reflections reached 
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Table 2. Mutual distances among 'good' solutions in cluster 1 (electrons) 

75 80 85 88 89 90 92 94 Average 

75 0 4276 3092 5170 4952 3095 5394 4855 4405 
80 4276 0 3287 2948 4930 3525 5486 2643 3870 
85 3092 3287 0 4494 4620 1 6 8 1  4671 4037 3698 
88 5170 2948 4494 0 4860 4500 5734 3436 4449 
89 4952 4930 4620 4860 0 4512 5867 4554 4899 
90 3095 3525 1 6 8 1  4500 4512 0 4981 3836 3733 
92 5394 5486 4671 5734 5867 4981 0 5791 5418 
94 4855 2643 4037 3436 4554 3836 5791 0 4164 

Average = 4329.5 

Table 3. Mutual distances among 'good' solutions in 
cluster 2 (electrons) 

81 83 84 Average 

81 0 3402 4748 4075 
83 3402 0 4521 3962 
84 4748 4521 0 4635 

Average = 4223.85 

Table 4. Mutual distances of 'fair' solutions (electrons) 

82 86 76 Average 

82 0 17292 16824 17058 
86 17292 0 20748 19020 
76 16824 20748 0 18786 

Average = 18288.1 

Table 5. Perturbations of the perfect solution and sub- 
sequent optimization, Z = 40 

s.d. = standard deviation. Start and end distances are given in 
electrons. 

Start End Start End End 
Seed Scale s.d. s.d. distance distance R factor 

21 16 19.1 < 1.1 29755 972 < 1.0 
22 16 19.6 0.04 30318 139 0 
23 16 19.8 0.04 30410 122 0 
24 16 19.4 <0.2 30173 159 0 
25 16 19.1 0.04 29988 120 0 

Table 6. Perturbations of the perfect solution and sub- 
sequent optimization, Z = 20 

s.d. -- standard deviation. Start and end distances are given in 
electrons. 

Start End Start End End 
Seed Scale s.d. s.d. distance distance R factor 

21 16 17.6 <0.7 29755 711 <0.7 
22 16 18.0 1.6 30318 2946 2.2 
23 16 18.3 1.0 30410 1181 !.1 
24 16 17.8 <0.3 30173 199 <0.1 
25 16 17.5 <0.5 29988 475 <0.5 

Table 7. Perturbations of the poor results of  the opti- 
mizer started from the empty unit cell at Z = 40 

Distances are given in electrons. 

Sta~-perfect End-perfect Start-end 
Z Seed Scale distance distance distance 

40 26 4 36299 37121 3927 
40 26 8 37613 37167 5361 
40 26 16 42017 36810 15506 
40 27 16 42692 37492 16143 
40 28 16 42065 37562 14083 
40 29 16 43026 38063 15094 
40 30 16 42121 36875 15622 
50 26 16 42017 35692 14874 
60 26 16 42017 34821 14964 
70 26 16 42017 33931 14935 
80 26 16 42017 33016 15239 

within 6500 e of  the perfect solution; that puts it into the 
'good' category. With 36 correct phases, the distance to 
the perfect solution was 18 000 e, i.e. the solution was 
'fair'. 

Our experience with the MIR algorithm, applied to 
test cases, can be summarized as follows. For noise- 
less synthetic cases, the asymmetric algorithm (13) is 
usually better than the symmetric one (11). This may 
be rationalized from the comparison of Figs. 5(a) and 
(b): the intersection of two circles seems to be less well 
defined than the intersection of a circle and a straight 
line. We have not explored the influence of  the relative 
weights A m in (13). Our exploration of  the cost-function 
surface hints at the presence of many minima even at 
Z -- 100. The number of minima seems to increase and 
the radii of their basins of attraction seem to decrease 
as Z decreases, i.e. as the problem gets more and more 
difficult to solve. Down to Z = 43, the empty start is 
within the basin of attraction of the global minimum. In 
spite of  the straight-line theorem, which informs us that 
there is always a downhill path from the empty start to 
the global minimum, the steepest-descent path 'switches' 
to a different minimum from the global one when Z is 
lowered to 42 and below. From our studies to 'escape' 
the basin of attraction of local minima, we conclude 
that at this level of Z there are many disjoint minima 
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with relatively high barriers among them. Additional 
tests run with the correct phases for a fairly small 
number of low-resolution reflections show that a low- 
resolution electron-density map is of great help for 
the solution of the MIR problem. This gives a lower 
bound on the volume of solution space encompassing 
the basin of attraction of the correct solution, and may 
indicate that the problem is still manageable. It should 
be emphasized that the above conclusions are valid only 
for our algorithm. The traditional MIR algorithm, as well 
as the one explored by Brran, have markedly different 
convergence properties. 

In practice, the convergence properties of the holo- 
graphic method when using heavy-atom data place limi- 
tations on how it can be used with MIR and MAD data. 
Unless a more effective minimization algorithm is found 
for this application, it will not be possible to use this 
method for solving MIR structures without initial phas- 
ing information. However, since the algorithm converges 
well once the electron density is within the basin of 
attraction of the correct solution, it should be possible to 
use conventional approaches to obtain an initial electron- 
density map, and then use EDEN to improve the maps. 
This possibility has been tested using real data from the 
protein kinesin. These results are shown in the following 
section. 

3.4. MIR results using data from kinesin 

To test the effectiveness of the MIR algorithms using 
real data, we studied the protein kinesin. Kinesin is a 
microtubule 'motor' protein that functions in intracellu- 
lar transport and chromosome movement. The data that 
were used for our tests were collected from a 349-residue 
piece of the protein that encompasses the motor head. 
The structure of the kinesin head domain was solved by 
Kull et al. (1996). The original MIR maps were fairly 
poor, suggesting that they may be improved using the 
holographic method. 

Native data to 1.8 A were available for this protein, 
as well as data collected from two derivatives, one 
containing one I atom and one containing three H g  
atoms. The data for each derivative extended to 2..5 A. 

As described in the previous section (§3.3), the EDEN 
implementation of the MIR algorithm suffers from con- 
vergence problems if the starting phases are too far 
from the correct solution. To circumvent this problem, 
we started from the MLPHARE estimate of the phases, 
assuming that these will place the corresponding electron 
density within the radius of convergence of our algor- 
ithm, and that running EDEN will result in an improved 
map. 

The native data were placed on an absolute scale with 
a Wilson plot program from CCP4 using data between 
3.0 and 1.8/~ resolution. The utility APODFO, which is 
part of the EDEN package, gave scale factors that agreed 
with those from CCP4 to within 3%. The derivatives 

were placed on an absolute scale by scaling them to 
the native data set. This was done by apodizing all three 
data sets to 3.0 ,~ resolution (and, later, to 2 A resolution) 
using APODFO and visually aligning the corresponding 
Wilson-like plots obtained. EDEN also requires an es- 
timate of the total number of electrons in the unit cell. 
We used the formula F(0,0, 0) _~ ( V + N ) / 3 ,  where V 

P 
is the volume of the unit cell and N~ is the number of 
protein electrons in it. 

Our first step was to check the occupancies and 
positions of the heavy atoms. To do this, we worked at 
a resolution of 3.0 A. BACK was run on the initial MIR 
phase set to prepare the corresponding electron-density 
map. FORTH was then run to obtain a consistent calcu- 
lated phase set. The average phase change between the 
results of the latter and the starting set from MLPHARE 
was 17 °. In our experience, such a phase difference 
is negligible. SOLVE was run at 3.0 ,~ resolution in 
correction mode and the resulting electron-density maps 
were visually inspected to see if there were either peaks 
or holes at the heavy-atom positions. Ideally, there 
should be no evidence of the heavy atoms in the resulting 
native electron density. A MIR run that produces a native 
electron density with the heavy atoms showing through 
may be the consequence of one of two errors: too low 
occupancy of the heavy atoms in the derivative or too 
high a scaling of the derivative with respect to the native. 
Similarly, if there are holes at the heavy-atom positions, 
their occupancy may be too high or the scaling of the 
derivative may be too low with respect to the native. 
By repeatedly running EDEN and inspecting the results, 
we adjusted the occupancies of the heavy atoms and 
made slight adjustments to the relative scaling of the 
derivative and the native data sets. 

Preliminary SOLVE runs (in MIR correction mode) 
were done at 3.0 A resolution. The results were quite 
encouraging. Before continuing the main MIR solution 
process, we decided to investigate the isomorphism of 
the derivatives. In order to do that, we started from 
the MIR map and ran it in correction mode against the 
measured structure factors of the native alone. This way 
the program is not constrained by any of the derivatives. 
We found that using the starting electron density as 
a very mild target (using Aspac e = 0.0003) prevented 
the program from straying too far from the original 
MIR map except where there were real differences. The 
same procedure was done with each of the derivatives. 
Pairwise comparisons of the results should reveal lack 
of isomorphism and local distortions around the heavy 
atoms. We found that, within our ability to detect differ- 
ences, the two derivatives of kinesin were isomorphous 
with the native. 

The next step was to obtain an estimate of the solvent 
envelope. This was done by apodizing the output of the 
previous 3.0,~ MIR run to 7.0 ,~. BACK was used to 
produce the corresponding (smeared) map (on the grid 
of the 3.0 ,~ run). The EDEN utility MAKETAR was 
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used to select the 50% of the grid points with lowest 
electron density. These were used as the solvent region, 
and assigned a target electron density of 0.33 e A -3. 

Two full SOLVE runs (in MIR correction mode) were 
done at 3.0/~ resolution using the solvent target and 
the two derivatives with A~p~c e - 0.003 and 0.01. The 
results were very encouraging, and we used the same 
solvent target to do a full SOLVE run (in MIR mode) at 
2.0/~ resolution. The resulting electron-density map was 
compared with that obtained from the original phases 
derived from MLPHARE and with a DM modified map 
(Cowtan & Main, 1993) (Fig. 7). The fully refined 
kinesin structure was used as a guide for comparing the 
maps. The EDEN map was comparable to the DM map 
everywhere and in some places it was clearly better. 

4. Non-crystallographic symmetry 

Non-crystallographic symmetry (NCS) is treated in a 
manner similar to previous sections. In particular, we 
use a real-space cost function that 'encourages' the 
symmetry but does not enforce it. Although our method 
has similarities to well established and successful meth- 
ods of NCS (Bricogne, 1974; Rossmann et al., 1992; 
Tsao, Chapman & Rossmann, 1992; Chapman, Tsao & 
Rossmann, 1992; Zhang, 1993; Cowtan & Main, 1993; 
The CCP4 Suite, 1994; Chapman, 1995), there are also 
differences. Some of these differences are advantageous, 
at least in theory. First, the exact knowledge of the 
molecular envelope is not critical. Second, the non- 
crystallographic constraint is 'soft' and its strength can 
be varied. Third, we do not interpolate in reciprocal 
space; instead, we use an expansion into basis functions 
in physical space. However, this is not an important 
distinction from other methods. These properties of the 

method allow the determination of the goodness of the 
symmetry from the data alone. One should also be able 
to find out if there are differences in the monomers that 
are related by non-crystallographic symmetry. The main 
disadvantage of the method is that it uses basis functions 
on a grid and therefore it has limited accuracy. 

4.1. Derivation of the equations for  NCS 

Non-crystallographic symmetry is characterized by 
the presence of NNc s monomers within each asymmetric 
unit of a crystal that have approximately the same elec- 
tron densities. Our derivation below will first describe a 
single asymmetric unit and exact NCS. The approximate 
shapes of the monomers will be described by a weight 
function, ~,k(r), k = 1 . . . . .  NNC s. The weight function 
will usually be #k(r) = 1 if r is inside the kth monomer 
and zero if r is outside it. Let us denote the electron 
density of the crystal by p(r). The expression #l (r)p(r)  
selects the first monomer [meaning that ~i,l (r)p(r)  = p(r) 
if r is within the first monomer and vb I (r)p(r) - 0 if r is 
outside the first monomer.] The kth monomer is related 
to the first monomer by the coordinate transformation 
-Qk~- The meaning of this statement is that both the 
masks and the electron densities are equal at NCS related 
points: 

p(Y2k~r ) = p(r)  

li, k(~klr  ) = )i,i (r) 

when r is in the first monomer, 

(14) 

when r is in the first monomer. 

(15) 

The transformations Y2kl consist of a Cartesian rotation 
and a translation. In the notation of paper II, they are 

rk = ~Qk~ r = Rkr  + "r k. (16) 

(a) (b) (c) 

Fig. 7. The electron density corresponding to residues 226-230 of kinesin is shown. In (a), the electron density shown is the direct result 
of phasing with MLPHARE. In (b), the density has been modified from (a) using the program DM. In (c). the density was modified from 
(a) using EDEN. 
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Note that r are Cartesian coordinates and fi, k(rk) ¢ 0 
if and only if ~ , ( r )  ¢ 0. The transformations ~2kl do 
not necessarily form a group, but their inverses are well 
defined and they satisfy Y21k = ~11. In general, any 
monomer can be transformed to any other one by the 
transformation 

= --7"~ T r k S2~,rk, = g2k, S2,k,r k, k[7~e(rk, - -rk,)] + rk, 

(17) 

where ~ v  = ~ - I  is the inverse of the (Cartesian) 
rotation 7~. We will also demand that the masks do not 
overlap, 

fi,j(r)~k(r ) = 0 for j # k, (18) 

where j, k now include all asymmetric units. 
In the rest of our derivation, we do not demand either 

exact NCS or an accurate knowledge of the shape of 
the monomers. Let us define a total mask and a NCS 
averaged density, 

}}(r) = ~'~ }~,(r) (19) 
k 

< p ( r ) )  = [1/NNcs]~_,fvk(r)p(Y2k,kr) (20) 
k 

for arbitrary k'. In order to 'encourage' but not enforce 
non-crystallographic symmetry, we will define a NCS 
cost function, 

fNCS I =  ,XNcsNcsV f <p(r)>] 2 dr, (21) 
Asym 

where Arcs is the number of asymmetric units in the 
unit cell, V is the volume of the unit cell and the 
integration is restricted to a single asymmetric unit. A 
formal expansion yields the equivalent formula 

fNCS = ½ANcsNcsV~-~ f ~'k(r)[p(r)] 2dr  
I, k Asym 

- ( I / N N c s )  ~ f ~ _ ,  f wk(r)p(r)P(~k,kr)dr}. 
k k' Asym 

(22) 

Note that the presence of fi, k(r) in the integrals effec- 
tively restricts r to be within the kth monomer. 

The above formulation generalizes known symmetry- 
averaging methods just as our solvent targets generalize 
known solvent-flattening methods in crystallography. 
The basis-function expansion of the electron density (2b) 
can be substituted explicitly into (22) and the integrals 
are carried out in Appendix A3. 

The NCS algorithm has been implemented in E D E N ,  

but it has been tested only on very simple test problems. 
It is not available in the released version, 2.5. 

5. Summary and discussion 

Io this paper, we have shown that MIR, MAD and NCS 
information can be incorporated into the holographic 
method. Using simulated heavy-atom data, we have ex- 
plored in some detail the convergence properties of our 
algorithm and the uniqueness of the solution it supplies. 
These simulations show that the holographic method 
does not converge as well as traditional reciprocal-space 
methods, even though the equations are mathematically 
equivalent. However, once the electron density is within 
the radius of convergence of the correct minimum, the 
holographic method quickly and accurately finds the 
correct structure. Given these findings, we propose that 
conventional methods should be used to identify an 
initial MIR solution and that the holographic method 
should then be able to improve that solution. We have 
made use of this strategy to determine the structure of the 
protein kinesin, using experimental MIR data. An initial 
structure of kinesin was identified using the program 
M L P H A R E .  Using E D E N  to optimize this solution led 
to a clear improvement in the resulting electron-density 
maps. 

The holographic method can be placed in a more 
global framework. It has been firmly established that 
the crystal structure of a macromolecule cannot be 
determined solely from the knowledge of its structure- 
factor amplitudes (see e.g. Bricogne, 1992). However, 
it seems intuitively clear that a unique structure can be 
reached if enough additional information is added and 
if there is an effective way of using that information. 
We argue that the holographic method provides an 
excellent framework for the incorporation of additional 
information into the determination of crystal structures. 

In its simplest form, the holographic method was used 
in cases where a partial structure was known, and it was 
used to complete the structure. In this implementation, 
if there are no external constraints, the electron-density 
maps obtained using the holographic method are very 
similar to traditional F o - F C and 2 F  o - F C maps. 
Traditional Fourier maps are actually marginally more 
accurate because the holographic method is limited in its 
accuracy by the (incomplete) basis-function expansion. 
However, if there are known constraints that must be 
satisfied by the electron density, the holographic method 
is able to use that information to recover electrons more 
accurately than traditional Fourier methods. 

The fact that the electron density is always positive is 
an important constraint; positivity is always enforced in 
E D E N .  In addition, often the electron density is known 
in part of the unit cell, either because the solvent region 
is known or because a partial structure has been placed in 
the unit cell. E D E N  is able to use the localized nature of 
the known electron density in real space: it can constrain 
it in some part of the unit cell and not in other parts. 
It can also use the known electron density as a mild 
constraint. Therefore, errors in the 'known' part can 
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be both detected and corrected. In the future, we plan 
to use the holographic method to incorporate chemical 
constraints into structure determinations (e.g. atomicity 
and connectivity). 

On the theoretical side, we scrupulously differenti- 
ate between lack of information and tacitly assumed 
information. For example, we consistently avoid the use 
of Fourier back transforms. In usual practice, unknown 
structure factors are given zero value as opposed to 
keeping them unknown. Similarly, in the presence of 
non-crystallographic symmetry, some formulations im- 
plicitly assume that the electron density is featureless 
outside the symmetry-related regions. We try to live 
by Lfinczos's dictum: use all the available information 
and no more. In principle, given a sufficient amount of 
information, it is possible to recover the crystal perfectly. 
However, different algorithms may have very different 
convergence properties and may have very different 
sensitivity to imperfections in the data. In our opinion, 
this last point alone is sufficiently important to justify 
the development of new methods for crystallographic 
computations. 

EDEN can be obtained free of charge by qual- 
ified collaborators. Please contact HS by e-mail at 
szoke2@llnl.gov for details. 
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Eckart, Richard More and the Physics Department for 
their support. 

APPENDIX A 

The suite of computer programs EDEN consists of the 
preprocessors APODFO, APODFC, EXPANDFO, EX- 
PANDFC, BACK, FORTH, MAKETAR, SYM, the main 
program SOLVE, the post processor REGRID and eval- 
uation utilities DPHASE and DRHO. Some of these 
were described in paper IV. Here we collect some of 
the 'working equations' that are actually used in EDEN 
Version 2.5 and give some further description of these 
utilities. A l -A4 are concerned with SOLVE and A5 with 
the other programs. 

A1. Cost function and gradient for a 
quadratic algorithm including MIR and MAD 

The electron density of the native macromolecule is 
expressed in terms of the real array n = {n(p)}. The 

quantities n(p) are equal to the total number of electrons 
in each Gaussian blob that are centered on the lattice 
points rp and have an intrinsic resolution dr~.~. The lattice 
points are obtained by dividing the crystal axes, a, b, c, 
into Pa, Po, Pc equal parts, respectively. The natural 
numbers P,~, Po, P<: are chosen so that 

lal/P~ = Ibl/Ph = Icl/P< ~- Air. (23) 

The widths of the Gaussians in (2b) are r/(Ar) 2. In our 
input file, the 'input resolution' din ,o must be specified. 
By default, we then set Ar  -- 0.6din p and 7/ - 1 for a 
simple lattice and Air = 0.7din p, r/ = 0.75 for a body- 
centered lattice. The user can also specify a non-default 
value of z/. [In the notation of (2a), the widths of the 
Gaussians are d~e~/Tr 2. From the relation dre ~ = 1.885din p, 
the default value for the grid spacing in a simple lattice 
is Air = dreJTr and r/ = 1, while in a body-centered 
lattice the default values are Air - 4dre.J3rc and 7/ - 
0.75.] The numbers Pa' Pb' Pc also have to factorize 
into small primes; in the current version of EDEN, they 
have to be multiples of 2, 3 and 5. In addition, they have 
to be divisible by the orders of all the screw axes of the 
space group; e.g., for a P41 space group, P. has to be 
divisible by 4. In realistic cases, it is possible to choose 
them so that the resolutions along the three crystal axes 
do not differ by more than 10%. The lattice points are 
represented by 

rp = (pa/P~)a + (pJPb)b + (pc/Pc)c, 

O < Pa < P~, O <_Po < Pb' O <_p,. <Pc. (24) 

Note that {(pJP,) ,  (pb/Pb), (pc~Pc)} are the fractional 
coordinates corresponding to the point rp. Such a 'sim- 
ple' lattice is used for crystals when one or more of 
the angles c~,/7, 7 among the crystal axes significantly 
differs from 90 °. For crystals whose angles o~, /3, 7 
are close to 90 °, a body-centered lattice is used. Body- 
centered lattices consist of two parts, which we denote 
the simple lattice and the intercalating lattice. Hexagonal 
close-packed lattices, suitable for trigonal and hexagonal 
crystals, are not yet implemented. 

The arrays that are needed for the calculation of O(h) 
will be defined almost the same way as in paper IV. 
A slight generalization will be incorporated in order to 
allow for several derivatives that have different effective 
crystallographic B values. As in §3.1, we assume that 
there are M + 1 sets of independent measurements, e.g. 
M derivatives and the native. The grid spacing and the 
value of 7/ determine the effective resolution of the grid- 
ded Gaussians, as described above. If the resolution of 
the measurements is higher, the programs APODFC and 
APODFO calculate the proper value of the apodization 
of R(h), F(h), (6a,b). If the mth derivative has a lower 
intrinsic resolution, dcr r, that would correspond to 6 m <_ 
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0, the appropriate value of ri,, to use with this derivative 
is rim -- (dieJdeff)ri. We define 

efacm(h ) = exp[-rim(TrArl.Trrhl) 2] exp[27ri off(h)]. 

(25) 

This generalization is not yet incorporated into EDEN; 
we use rim = rt everywhere. The offset array, off(h), 
is 0 for a simple grid and for the simple part of a 
body-centered grid. For the intercalating part of a body- 
centered grid, 

off(h) = 1/2(h/P,~ + k / P  b + l/Pc). (26) 

The factor ].Y'rhl 2 = 1/d(h) 2 is the reciprocal square of 
the interplane spacing for the reciprocal-lattice vector h. 
It is given by 

[.T'rhl 2 = ( 1/A2)[(h 2/a 2) sin20~ + (k 2/b 2) sin2/3 

+ (12/c 2) sin23" 

+ 2(kl /bc)(cos/3 cos 3' - cos c~) 

+ 2(lh/ca)(cos "y cos c~ - cos/3) 

+ 2(hk /ab ) (cosc~cos~-cos3" ) ] ,  (27) 

A 2 =  1 -  cos2c~- cos2/3- cos27 

+ 2 cos o~ cos/3 cos 7- (28) 

Using the arrays in (25) and (26), the cost function can 
be calculated by FFT as follows. From (3), 

Om(h ) = efacm(h ) • DFT + (n). (29) 

This makes the calculation of fede, in (11) possible by 
a fast Fourier transform, a scalar multiplication and the 
extraction of a square root. For completeness, we repeat 
here the generalization of the 'symmetric' algorithm, 
equation (11): 

M 
1 t 2 t win(hi []gm(h) Om(h)l Ldcn --- ~ E ,~m E -~- 

m=O h 
- F '  [ m(h)[] 2. (30) 

If there is only the native, M = 0. The gradient of the 
cost function, gedcn' c an  be calculated as 

M 
gedcn(n) = 2 E AmRe[DFF-({W'm(h)2[IR'm(h) 

m=0 

+ O r e ( h ) ] -  ]F'm(h)l]/RIR~.(h ) + Om(h)l} 
, f ,  )] x [Nm(h ) + Om(h)Je ac (h) ; (31) 

see also equation (A 10) of paper IV. 

The derivation of the asymmetric algorithm for MIR 
will be presented in a slightly more general form than 
in §3.1. It allows for the possibility that the native and 
the various derivatives have different resolutions. If the 
intrinsic resolutions of the data sets are characterized by 
rim, the proper O,,,(h) for each of them, in parallel with 
(3), is 

O m ( h  ) - -  exp[-rim(TrArlfrhl) 2] 
P 

× E n(p)exp(27rih • .T'rp). (32) 
p=l  

Let us define, for m = 0 . . . . .  M, 

am(h ) : exp[_ rim (Tr Arljr.Thl ) 2]/exp[_rio(TrArl.~rh[)2]. 

(33) 

Obviously, %(h)  = 1 and the notation O0(h) for 
O(h) is superfluous. Usually, the native has the highest 
intrinsic resolution (the lowest B value) and therefore 
c~m(h) < 1. Equation (10) can then be generalized to 

[Fm(h)l 2 - IRm(h)  -t- Om(h)l 2 

= [Rm(h)l 2 -1- R m ( h ) O * ( h  ) + R*m(h)Om(h ) 
+ IOm(h)l 2 

= Igm(h)l 2 + o%(h)[Rm(h)Oo(h) 
+ Rm(h)Oo(h)] + C~m(h)2lOo(h)l 2. (34) 

Subtracting the equation for the native from each deriva- 
tive, as in (12), we get 

IF0(h)[ 2 = Ie0(h)l 2 + R0(h)O0(h) + Ro(h)O0(h) 

+ IO0(h)l 2, 

IFm(h)l 2 - C~m(h)2lfo(h)[ 2 

-- IRm(h)l 2 - %(h)2lgo(h)l  2 

+ C~m(h){[Rm(h) - c%(h)Ro(h)]O{](h ) 
+ [R*(h) - •m(h)Ro  (h)]Oo(h) }, 

m - -  1 , . . . , M .  (35) 

The cost function for the asymmetric algorithm can be 
written as the generalization of (13), with the proper 
stabilizing weights: 

f~de, 
f 

= ~4Ao ~ , 2 , w<,Ch) [Igo(h ) + OoCh)l- IF/}Ch)l] 2 
h 

M 
+ E )~m E w,'.(h)2[c%.(h)Um(h)Oo(h) 

m=l h 

+ C~m(h)/Pm(h)Oo(h ) - Hm(h)]2), (36) 
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where 

U,,,(h) = [Rm(h ) - C~m(h)Ro(h)]/[lRm(h ) 
- C~m(h)R0(h)l ], (37) 

Hm(h ) = [IF, , , (h)l  2 - o%(h)2]Fo(h)[ 2 - IR , . (h ) l  2 

+ C~,n(h)21go(h)lZ]/[lRm(h) - a,,,(h)Ro(h)l], 

(38) 

W'm(h ) = [IRm(h) - am(h)Ro(h)12]/[lRm(h) 
- a,,,(h)R0(h)l 2 + Hm(h)2]. (39) 

The m -- 0 term is the same as in (30). The factors 
Urn(h) are of unit magnitude; if their denominators are 
small, the proper limits of U,,,(h), Hm(h) and w~,,(h) are 
used in EDEN. The gradient can also be calculated in a 
straightforward way. It is 

g~d~,(n) = 2Re [AoDFT-({w'(h)2[lR~,(h)+ O0(h)l 

-IFI,(h)I]/21RI,(h ) + Oo(h)l} 

× [R()(h) + Oo(h)]efaq](h)) 

M 

+ ~ AmDFT-{w'm(h)2Um(h) 
t ? l :  1 

x [am(h)U,,(h)O,*~(h ) 

+ am(h)U~,,(h)Oo(h)- Hm(h)]efac*(h)} / . 
"1 

-I  

(4o) 
A2. Cost function for molecular 

replacement and solvent flattening 

The target density is described by the set {n(P)tar~t } and 
~2 the weight array, w,. The cost function, (7), is 

P 

fspace = lAspaceP ~ w2[n(p)--n(p)target]2 (41) 
p = l  

and the n(p) component of its gradient is 

g~pace[n(p)]. = A s,p.a~ . ,. - n (p) target]. (42) 

× exp[- [ r  - r(p, k)12/,1Ar2]} ~ ~ n(p',k) 
k (p' ,k) 

% 

× e x p [ - ] r -  r(p',k)[2/rlAr2] 2 d r [  

-(1/NNcs)EE j {w,(r)En(p,k) 
k k' Asym (p,k) 

x exp[-[r-r(p,k)[2/ , lz~r2]}{  ~. n(pt, k t) 
(p' ,U ) 

× exp[-l~ '2, ,kr-  r(p',k')12filar2]}) dr. (43) 

In (43), the function #k(r) restricts r to be within 
monomer k. The notation (p, k) denotes a lattice point 
p within the monomer k. Similarly, Y2k,kr is within 
monomer k' and (p', k') denotes a lattice point in that 
monomer. The summation over (p, k) means a summa- 
tion over all lattice points within monomer k (and not a 
summation over the monomers). 

The Gaussian integrals can be carried out explicitly 
if and only if ~i,k(r) is approximately constant within the 
region around r(p, k), where the appropriate Gaussian 
basis function, exp[ - l r  - r(p, k)] 2/r/At2], is appreciably 
different from zero. The overlap integrals in the first 
term of (43) are 

j '  wk(r ) exp{-[ ] r  - r(p,k)l 2 
Asym 

+ [r -  r(p',k)12]/7~Ar 2 } dr 
= (TrTiAr2/Z)3/2wk[r(p,k)] 

× exp{-[[r(p,  k) - r(p',k)[2/Z,lArZ]}. (44) 

If the integrals in the second term are transformed by 
the equality 

IS2k,kr- r(P', k')l 2 =  I t -  S'2kk, r(P', k')l 2, (45) 

they become similar to those in the first term of (43). 
After collecting all the terms and using (45) again, we 
get 

A3. Derivation of cost function 
for non-crystallographic symmetry 

The cost function (22) is written for a general continuous 
density. EDEN is written in terms of the basis-function 
expansion (2b), which, if substituted into (22), yields a 
rather complicated expression 

fNcs = [ANcsNcs V/Z( Tr'l'~r2) 3] 

(~ .f w~(r){~(p,k) 
Asym {p.k) 

f~cs [ANcsNcs V/2( 2rcT1Ar ) / - ]  

x ~ ~ wk[r(p,k)]n(p,k)( ~ n(p',k) 
k (p,k) \ ( p ' . k )  

× exp{-[]r(p,k) - r(p',k)[Z]/2,lAr 2 } 

- (1/NNcs) ~_. E n(p', k') 
k' (p'.k') 

x exp{--[[f2k,kr(p, k ) - r(p',k')[2]/271Ar2}). 
\ 

/ 

(46) 
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When r(p, k) is on the periphery of monomer k, wk(r) 
is not constant over the region of integration. One 
remedy is to taper off ~k(r) slowly on a scale of 
din p. For the actual usage of (46), we note that all the 
exponentials can be precalculated as they do not depend 
on n(p). Also, for any given lattice point (p, k), there 
are only a few other lattice points, (p', k'), for which 
the exponentials appearing in (46) are appreciable. This 
makes the calculation of the cost function an order P, 
rather than an order p2, calculation. The gradient is very 
simple: 

Of NcslOn(p, k) = [ NcsUcs Vl(2rrr/ArZ)3/2]wk[r(p, k)] 

x ( ~ n(p',k) exp{-[lr(p,k) 
\ ( p  ,k) 

- r(#, k)12]/Z Ar 2} - (I/U.cs) 

x ~ ~ n ( f ,  k') exp{--[lS2k,kr(P, k) 
k' (p',k') 

- r(p' ,  k') ]2]/2r/Ar2 } ) .  (47) 

When there is crystallographic symmetry, the sums in 
(46), (47) actually go over the whole unit cell. 

A4. Cost function for crystal symmetry 

When there is crystal symmetry, the grid spacing is 
always chosen so that all coordinates that are symmetry 
related to a grid point also fall on grid points. The 
structure factors and the starting density {n(p)} are 
expanded to the whole unit cell, i.e. to P1 symmetry. 
As long as the gradient of the cost function is large, 
crystal symmetry is maintained automatically by the 
solver. When the magnitude of the gradient gets small, 
the program has a tendency to violate crystal symmetry. 
This is expected and used for diagnostic purposes. At the 
end of the loop, symmetry-related points are averaged 
and the corresponding structure factors are calculated. 
It is interesting to speculate that relaxing crystalline 
symmetry may make the surface of the cost function 
smoother and eliminate the separation of some minima. 

Crystallographic symmetry can also be maintained 
during the whole minimization procedure by adding 
(yet) another cost function. It is easy to see that the 
complicated equations given above, which describe non- 
crystallographic symmetry, are satisfied if we ensure 
that the number of electrons is equal in all symmetry- 
related grid points. Accordingly, we can define a crystal- 
symmetry-related average (gridded) 'density' 

(n(p)) = (1/Ncs) y~n(p(m)), (48) 
m 

where the index m runs over the crystal symmetry group 
of Ncs elements and p(m) denotes symmetry-related grid 
points. Crystal symmetry is established by minimizing 

the cost function 

P 
I AcsP ~ { n ( p ) -  (n(p))}2 (49) f c s : 5  

p=l  

and the n(p) component of its gradient is 

gcs[n(p)] = AcsP{n(p) - (n(.p))}. (50) 

As the measured structure factors, the calculated ones 
for the reference and the known electron densities all 
obey crystal symmetry, in principle, only numerical 
instabilities cause the solution to deviate from it. 

A5. Ancillary programs: 
preprocessors, post processors 

A5.1. APODFO and APODFC 
The two apodization programs, APODFO and 

APODFC, carry out an analysis of the structure-factor 
data that is similar to a Wilson plot. They are used for 
deriving F ' (h)  from F(h) and R'(h)  from R(h), (6), and 
for determining the scale factor that places the observed 
structure-factor amplitudes, IF'(h)[ob~, on an absolute 
scale. 

APODFO reads structure factors from an input Fob ~ 
file, while APODFC reads structure factors from an input 
Fcalc file. Each one generates a set of data points that are 
mean values of ln(lFI 2) within shells of equal thickness 
in a space of 1/d 2, where IFI stands for IF obs or IFlca~c 
and 

1/d 2 = (h2/a 2) + (k2/b 2) + (12/c 2) (51) 

or its generalized form for non-orthogonal crystals, (27). 
Each program then finds the slope of the set of data 

points by fitting a straight line to the data between 
appropriate resolution limits, given in the input file. 
The slope is equivalent to an average crystallographic 
B factor. The program also reports the recommended 
smearing factor, ¢Sfobs o r  6f~al c in (6) and the y intercept 
(Y0ob~ or Y0calc), which can be used for scaling the 
experimental data. Normally, the programs write out 
apodized versions of their input using the appropriate 
6fobs or 6fcal c. Therefore, 6fob, ~ or ¢Sf~al ~ will not need to be 
used explicitly in the solver. 

A5.2. EXPANDFO and EXPANDFC 
The preprocessors EXPANDFO and EXPANDFC ex- 

pand Fob,~ and Fcalc files to P1 symmetry from the set of 
unique reflections. If there is anomalous scattering, only 
the symmetry operators appropriate to the space group 
are used. If there is no anomalous scattering, Friedel's 
relations are used in addition to the symmetry operators. 
Unless the crystal symmetry is P1 to begin with and 
anomalous scattering is present, EDEN uses only the 
h _> 0 half ellipsoid. 
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A5.3. BACK 

The preprocessor program called BACK produces a 
vector, n(p), of size P = P~PbPc, corresponding to 
an optimum set of positive Gaussian electron densities, 
given a set of complex structure factors, Fknow .. This 
program uses the same conjugate-gradient algorithm as 
SOLVE but, instead of minimizing the discrepancy func- 
tion in (5), it minimizes the squared distance between 
two complex quantities: 

fback  - -  E IFknown e x p [ - 6 ~ l ( T r A r [ ~ r h l )  2] - O(h)[ 2, 
h 

(52/ 

where the symbols are as defined in (3) and (6a). The 
main use for BACK is to transform known electron- 
density information into Gaussian basis-function ampli- 
tudes, n(p), in order to use them for setting limiting 
constraints on the magnitude of the solution in the main 
solver and for setting up a 'target' density forf~r,~,: e in (7). 
In fact, BACK can replace inverse Fourier transforms (for 
whatever purpose these are used) and, because positivity 
is ensured everywhere, the well known problems caused 
by the termination of Fourier series are avoided. 

A5.4. FORTH 

FORTH applies a fast Fourier transform to the 
electron/voxel information, n(p), multiplying it by the 
exponential factor exp[--r/(TrArl.T'rh])2] and converting 
it to structure factors. FORTH may thus be regarded 
as the inverse of BACK. FORTH is used to prepare an 
Fc~ k file that is consistent with a BACK-generated set 
of n(p) data. 

A5.5. MAKETAR 

The utility MAKETAR is used to prepare solvent 
targets and weights for the solver described in (41). 
MAKETAR takes as input a smeared version of the 
complex Fc~l~ of a model, prepared by running APODFC 
at a very low resolution (e.g. 7/~) followed by BACK 
at the regular resolution. Based on their values, points 
in the resulting n(p) file are redefined in MAKETAR as 
'low' or 'high' such that a preset fraction (default: 1/2) 
of them are 'low' and are targeted to contain solvent. 
'Low' points are given a weight of 1 and a target that 

--~ , ° ° 
is equivalent to 0.33 e A ; high' points have a weight 
of 0 and an unused target. 

A5.6. SYM 

SYM is a utility for manipulating protein data bank 
(PDB) information directly. It is used for preparing 
masks used in SOLVE with non-crystallographic sym- 
metry. 

A5.7. DPHASE 

DPHASE calculates the phase differences and the 
cosines of the phase differences between comparable 
(hkl) structure factors in two structure-factor files, ~1~ 
and F~lc. The phase differences are calculated twice - 
once weighted by the amplitudes of the first file, IF~I~[, 
and once weighted by the amplitudes of the second, 
IF~alc I. In each case, they are averaged and reported over 
shells of equal I / d  e in (hkl) space. DPHASE excludes 
terms for which the amplitude in either file is 0 and it 
excludes the (000) term. 

A5.8. DRHO 

DRHO measures the normalized variance between 
two electron/voxel files, n(p) and nt(p). 

1/2 

(53) 

or the metric distance 

D= P 2[n(p)-n'(p)l 
p = l  

(54) 

A5.9. REGRID 

REGRID is a utility that evaluates the electron density 
in the unit cell from its representation in terms of n(p). 
It first calculates the structure factors in (3) by a fast 
Fourier transform, then it uses a back transform to 
evaluate (2b), usually on a twice finer grid. Owing to the 
exponential factor present in (3), the result of the back 
transform is always positive and there are no cut-off 
errors. REGRID produces a map file in X-PLOR format. 

APPENDIX B 

In this Appendix, we summarize some of the relevant 
discussion on frames, following Daubechies (1992) and 
Heil & Walnut (1989) (referred to as D and H&W, 
respectively). Our interest is in the electron densities 
of molecules, p(r) of (1). They are positive functions 
of limited resolution or bandwidth. According to (2b), 
they are to be represented by a set of Gaussian basis 
functions. 

A set of functions {x n } is called a frame (with respect 
to the functions x) if, for any one of the functions x, the 
sum of the squares of its scalar products with all of 
the functions x,, is bounded both from above and from 
below (D 3.2.1, H&W 2.1.1): 

A(x,x) < ~-'~(](x,x,,)l 2) < B(x,x); 0 < A,B < ,9o, 
n 

(55) 
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where the scalar product (x, y) (also called a convolution 
or projection) is defined as the integral 

(x,y) = f x ( r ) y ( r ) d r .  (56) 

The existence of a frame ensures that the operator S 
that produces (x, xn} from x is a bounded linear operator 
with a bounded inverse operator S - t .  The functions x 
can then be expanded with the help of the operators S, 
S - l .  Indeed, let us define the operator S by 

S x =  y~((x,x,,))x,. (57) 
?/ 

It follows that the function x can be expanded (repre- 
sented) in terms of the set of functions x,, by the formula 
(D 3.2.8, H&W 2.1.5) 

x =  ~ ] a , x , ,  where a,, = (x, S - '  x,,). (58) 

The set of functions {S-rx,, } is also a frame, called the 
dual frame. It satisfies the bounds (D 3.2.6, H&W 2.1.4) 

B-'(x,x) ~ ~(l(x,S-'xn>l 2) ~ A-~(x ,x ) .  (59) 
g/ 

The significance of (55)-(59) for us is that, if we can 
show that our 'basis' set of Gaussians, (2b), is indeed 
a frame, we can be assured that any electron density 
can be represented by them. Moreover, we are assured 
that the representation is mathematically stable in both 
directions in the following sense. Given two sets of 
coefficients, a, ,  b,, that are close, the set of coefficients 
c,, -- a,, - b,,, when used in (58), defines a function that 
is small because in (55) B < cx~. The converse is that 
if the function x is small the set of coefficients is also 
small because of the right-hand inequality in (59). In 
fact, (58) supplies an algorithm for the representation of 
a known electron density. 

The basis-function sets that are most familiar are 
orthonormal ones. Those are the generalizations of or- 
thonormal (Cartesian) coordinate systems to (infinite- 
dimensional) function spaces. Such basis sets always 
constitute frames, with A = B = 1 in (55), so frames 
can be thought of as generalizations of orthonormal basis 
sets. Frames are usually not orthogonal and they are 
usually redundant in the sense that the representation 
presented in (58) is not unique. However, there is a 
connection among all possible representations of x in 
terms of x,, (H&W 2.1.5). If, in addition to the repre- 
sentation (58), we can find another set of coefficients 
that represents x (e.g. by using the algorithm of EDEN 
or by magic), 

x = ~ c ,x , ,  (60) 

the following connection exists between the two repre- 

sentations: 

]c,[ 2 = ~ la, I 2 + ~ ]a, - c,,I 2. (61) 

Equation (61) shows that algorithm (58) always yields a 
representation with 'minimal norm'. 

Two main classes of frames are discussed in D 
and H&W. The frames in the first class are called 
Weyl-Heisenberg-G~ibor frames; they can also be 
viewed as windowed Fourier transforms. Those in the 
second class are wavelet frames. The basis function 
representation in this paper [(2b)] belongs to the former 
class. The relevant formulas will be shown in one 
dimension but they apply to three-dimensional lattices 
as well. 

Given a standard Gaussian 

g(x) = 71 --I/4 exp ( -x2  /2  ), (62) 

we can define a set of functions 

gm..(x) -- e x p ( i m ~ o x ) g ( x -  nt ), m ,n  = integer. 

(63) 

They are the basis functions of the windowed Fourier 
transform. They measure the frequency content, around 
m%, in frequency, of a small section of a function 
centered around n t  in space. It is shown in D 3.4.4 
that if co,t o < 2rr the set of functions (63) constitutes a 
frame. The frame bounds A, B of (55) are estimated in D 
Table 3.3. The significance of the frame bounds is that, 
if they are close, the representation of most functions 
converges rapidly. In our application, we are interested 
in a representation where only m = 0 is kept in (63). 

Let us identify the variables in (62), (63) with those 
of (2b) as 

x = 21/2rrr/dres; t,, = 21/2rrAr/drcs. (64) 

The experimental data set and the structure factors of the 
known part are apodized according to (6a,b) to have the 
same inherent resolution as the basis set (2b). It follows 
that all possible (positive) electron densities have a 
maximum resolution dre.~, their Fourier transform falls off 
in reciprocal space as exp(-d~esI.T'rh] 2) and correspond 
to a crystallographic B/4  = d2e.~i A prototypical function 
with these properties is one of the Gaussians in (63) 
corresponding to one of the Gaussian basis functions of 
(2b). The Fourier amplitudes of such a function can be 
calculated by the formula 

O o  

f exp [ - (x  - nt,) 2/2] exp(im%,x) dx 

= (27r) 1/2 exp(-m2u;2,/2) exp(imnw,,t,,). (65) 

We will choose 

A r  = dres/Tr , %:o = rr. (66) 

The frame bounds, from D Table 3.3, are close to 
A = 1.5 and B = 2.5, their ratio being about 1.7. 
Thus, the frame is fairly tight and we should expect 
fairly good convergence of the representation for any 
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electron density. Moreover, from (64), we can calcu- 
late the value of the first non-zero Fourier component, 
exp ( -w~/2 )  = 0.085. Therefore, if we neglect all higher 
Fourier components of the frame, i.e. if we restrict 
our representation to (3), the maximum relative error 
we make is 8.5%. Similarly, the restriction that all 
the amplitudes of the Gaussians be non-negative, in 
order to satisfy the constraint that the electron density 
be non-negative everywhere, is expected to cause a 
similarly small error. This is the mathematical basis of 
our representation of electron densities. 

The above discussion can be generalized to a multi- 
resolution representation either in terms of Gfibor frames 
or in terms of wavelets. In either case, satisfying posi- 
tivity everywhere can be quite difficult. 
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